Automated solid-phase radiofluorination using polymer-supported phosphazenes.

نویسندگان

  • Bente Mathiessen
  • Fedor Zhuravlev
چکیده

The polymer supported phosphazene bases PS-P₂(tBu) and the novel PS-P₂(PEG) allowed for efficient extraction of [¹⁸F]F⁻ from proton irradiated [¹⁸O]H₂O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic sulfonates (69%) and bromides (42%); the total radiosynthesis time was 35-45 min. The multivariate analysis showed that the radiochemical yields and purities were controlled by the resin load, reaction temperature, and column packing effects. The resins could be reused several times with the same or different substrates. The fully automated on-column radiofluorination methodology was applied to the radiosynthesis of the important PET radiotracers [¹⁸F]FLT and [¹⁸F]FDG. The latter was produced with 40% yield on a 120 GBq scale and passed GMP-regulated quality control required for commercial production of [1¹⁸F]FDG. The combination of compact form factor, simplicity of [¹⁸F]F⁻ recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and evaluation of a new polymer-supported pseudoephedrine auxiliary for asymmetric alkylations on solid phase.

A polymer-supported pseudoephedrine auxiliary linked to the support through nitrogen, has been developed for use in asymmetric alkylations on solid phase.

متن کامل

Automated synthesis of a 96 product-sized library of triazole derivatives using a solid phase supported copper catalyst.

This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different ...

متن کامل

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to b...

متن کامل

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to b...

متن کامل

Applying Pareto Design of GMDH-Type Neural Network for Solid-Liquid Equilibrium of Binary Systems (Isotactic Poly 1-Butene (1)-Organic Solvents (2))

Isotactic poly (1-butene), ipbu-1, was synthesized by using a metallocene catalyst. The thermodynamic phase behavior of polymer–organic solvents systems is very important in every polymer application.  In this paper, the solid–liquid equilibrium of ipbu-1 with different organic solvents (1-heptyne, cyclo octane) was studied by a mathematical model. By considering the experiments temperature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 18 9  شماره 

صفحات  -

تاریخ انتشار 2013